(WSN)Environmental monitoring

Industrial Monitoring and Landfill Ground Well Level Monitoring and Pump Counter

Thursday, September 17, 2009

wireless sensor network

(WSN) is a wireless network consisting of spatially distributed autonomous devices using sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants, at different locations.

The development of wireless sensor networks was originally motivated by military applications such as battlefield surveillance. However, wireless sensor networks are now used in many industrial and civilian application areas, including industrial process monitoring and control, machine health monitoring, environment and habitat monitoring, healthcare applications, home automation, and traffic control.

In addition to one or more sensors, each node in a sensor network is typically equipped with a radio transceiver or other wireless communications device, a small microcontroller, and an energy source, usually a battery. The envisaged size of a single sensor node can vary from shoebox-sized nodes down to devices the size of grain of dust, although functioning 'motes' of genuine microscopic dimensions have yet to be created. The cost of sensor nodes is similarly variable, ranging from hundreds of dollars to a few pence , depending on the size of the sensor network and the complexity required of individual sensor nodes. Size and cost constraints on sensor nodes result in corresponding constraints on resources such as energy, memory, computational speed and bandwidth

Applications

The applications for WSNs are many and varied, but typically involve some kind of monitoring, tracking, and controlling. Specific applications for WSNs include habitat monitoring, object tracking, nuclear reactor control, fire detection, and traffic monitoring. In a typical application, a WSN is scattered in a region where it is meant to collect data through its sensor nodes.

Area monitoring

Area monitoring is a common application of WSNs. In area monitoring, the WSN is deployed over a region where some phenomenon is to be monitored. For example, a large quantity of sensor nodes could be deployed over a battlefield to detect enemy intrusion instead of using landmines. When the sensors detect the event being monitored (heat, pressure, sound, light, electro-magnetic field, vibration, etc), the event needs to be reported to one of the base stations, which can take appropriate action (e.g., send a message on the internet or to a satellite). Depending on the exact application, different objective functions will require different data-propagation strategies, depending on things such as need for real-time response, redundancy of the data (which can be tackled via data aggregation and information fusion techniques), need for security, etc.

Windrow Composting

Composting is the aerobic decomposition of biodegradable organic matter to produce compost, a nutrient-rich mulch of organic soil produced using food, wood, manure, and/or other organic material. One of the primary methods of composting involves using windrows.

To ensure efficient and effective composting, the temperatures of the windrows must be measured and logged constantly. With accurate temperature measurements, facility managers can determine the optimum time to turn the windrows for quicker compost production. Manually collecting data is time consuming, cannot be done continually, and may expose the person collecting the data to harmful pathogens. Automatically collecting the data and wirelessly transmitting the data back to a centralized location allows composting temperatures to be continually recorded and logged, improving efficiency, reducing the time needed to complete a composting cycle, and minimizing human exposure and potential risk.

An industrial wireless I/O device mounted on a stake with two thermocouples, each at different depths, can automatically monitor the temperature at two depths within a compost windrow or stack. Temperature sensor readings are wirelessly transmitted back to the gateway or host system for data collection, analysis, and logging. Because the temperatures are measured and recorded continuously, the composting rows can be turned as soon as the temperature reaches the ideal point. Continuously monitoring the temperature may also provide an early warning to potential fire hazards by notifying personnel when temperatures exceed recommended ranges

Greenhouse Monitoring

Wireless sensor networks are also used to control the temperature and humidity levels inside commercial greenhouses. When the temperature and humidity drops below specific levels, the greenhouse manager must be notified via e-mail or cell phone text message, or host systems can trigger misting systems, open vents, turn on fans, or control a wide variety of system responses. Because some wireless sensor networks are easy to install, they are also easy to move as the needs of the application change